

PII: S0040-4039(97)01028-9

## Palladium-Catalyzed Acylation of a 1,2-Disubstituted 3-Indolylzinc Chloride

Margaret M. Faul\* and Leonard L. Winneroski

Lilly Research Laboratories, A Division of Eli Lilly and Company, Chemical Process Research and Development Division, Indianapolis, IN 46285

**Abstract**: 3-Acylindoles were prepared by palladium catalyzed coupling of an acid sensitive 1,2disubstituted 3-indolylzinc chloride with a number of acid chlorides to give the corresponding ketones in 33-74% yields. © 1997 Elsevier Science Ltd.

A great number of synthetic routes are available to prepare 3-acylindoles.<sup>1</sup> Vilsmeier acylation,<sup>2</sup> Friedel-Crafts acylation,<sup>3</sup> acylation of indole Grignard reagent<sup>4</sup> and acylation of 3-indolylzinc chloride<sup>5</sup> have all been utilized. Despite the seeming generality of these procedures, none are effective for acylation of acid sensitive 2aryloxyl methyl indoles such as **3**. Palladium catalyzed cross-coupling approaches have been utilized to prepare a wide variety of 2- and 3-substituted indoles, but no methods for the palladium catalyzed acylation of a highly functionalized 3-indolylzinc chloride have been reported. Herein, we wish to report the first example of the palladium catalyzed acylation of a substituted 3-indolylzinc chloride.

Indole 3 was prepared in three steps: 1) alkylation of the sodium salt of ethyl indole-2-carboxylate with methyl iodide in DMF, 2) LAH reduction of the ester to alcohol 2, and 3) nucleophilic aromatic substitution of 1-chloro-4-fluorobenzene with the sodium alkoxide of 2 in DMF at 80 °C to give 3 in 98% overall yield (eq 1).



Reaction of 3 with either POCl<sub>3</sub>/dimethyl acetamide or PPA/acetic anhydride<sup>6</sup> afforded no C-3 acylation, but led to the formation of multiple by-products including *p*-chlorophenol. The acid instability imposed by the 2-aryloxy functionality of 3 dictated the use of basic or neutral acylation conditions.

Preparation of 3-lithioindole **5a** was accomplished by halogen-metal exchange of 3-bromoindole **4a**<sup>7</sup> with either *n*-BuLi or *t*-BuLi at -78 °C (eq 2).<sup>8</sup> However, reaction of **5a** with freshly distilled acetyl chloride at -78 °C produced only small amounts of acylation product **7a** (<4%) and the recovery of mostly hydrogen quenched product **3** (eq 2). Similarly, reaction of acetyl chloride with the Grignard reagent **5b**, prepared from 3-iodoindole **4b**,<sup>9</sup> gave no acylation product and mostly **3**. Reaction of the organolithium **5a** with the Weinreb amide **6** afforded a 43% yield of **7a**.<sup>10</sup>



We next turned our attention to the more stable but less reactive 3-indolylzinc chloride **5c**. Compound **5c** was prepared from 3-bromoindole **4a** by sequential treatment with 2 equiv of t-BuLi at -78 °C followed by 1 equiv of ZnCl<sub>2</sub> (0.5 molar solution in THF).<sup>11</sup> It has been demonstrated that unsubstituted 3-indolylzinc chloride reacts with acetyl chloride and a variety of other acid chlorides at room temperature without catalysis;<sup>5</sup> however, the 1,2-disubstituted indole **5c** proved to be unreactive towards acetyl chloride under these conditions. Negishi has shown that palladium-phosphine complexes catalyze the reaction of organozincs with acyl chlorides.<sup>12</sup> Previous workers have also shown that 3-indolylzinc halides undergo cross-coupling with aryl and heteroaryl halides in the presence of Pd (0).<sup>13</sup> As an extension to this methodology, we have found that **5c** reacts readily with acetyl chloride at -35 °C in the presence of 10 mole % of a palladium (0) catalyst. The addition of 1 equiv of CuI did not catalyze acylation of **5c**, even after several hours at room temperature.

Optimization of the reactions conditions indicated that 1 equiv of  $ZnCl_2$  and 1-3 equiv of acetyl chloride furnished the best yields. Higher equivalents of zinc chloride or acetyl chloride led to lower yields of ketone



| Entry | R                  | Ketone     | Yield <sup>®</sup> (%) |
|-------|--------------------|------------|------------------------|
| 1     | CH <sub>3</sub>    | <b>7</b> a | 74                     |
| 2     | CH <sub>2</sub> Ph | 7ь         | 61                     |
| 3     | Ph                 | 7c         | 66                     |
| 4     | $(CH_2)_2CH_3$     | 7d         | 70                     |
| 5     | CH <sub>2</sub> Cl | 7e         | 33                     |

Table. Pd (0) Catalyzed Acylation of 3-Indolylzinc Chloride 5c

\*Yield of analytically pure product.

due to zinc-mediated ring opening of THF with acetyl chloride to generate the corresponding 4-chlorobutyl ester.<sup>14</sup> Under the ideal reaction conditions, ketone 7a could be prepared in 74% yield (Table, entry 1, eq 3).<sup>15</sup>

To determine the generality of this coupling procedure, 5c was acylated with a variety of acid chlorides in the presence of Pd (0) to give ketones 7a-d in 61-70% yield (Table, entries 2-4, eq 3). Low yields (<10%) and poor regioselectivity have been reported on formation of 3-(2-haloacyl)indoles under Friedel-Crafts conditions.<sup>16</sup> Palladium (0) catalyzed coupling of 5c with chloroacetyl chloride afforded 7e in 33% yield (Table, entry 5).<sup>17,18</sup>

Preparation of **7a** is representative of the general procedure: To a solution of 1.43 mmol of **4a** in 10 mL of degassed THF at -78 °C was added 2 equiv of 1.7 M *t*-BuLi in pentanes. One equiv of 0.5 M ZnCl<sub>2</sub> in THF was added to the reaction after 10 min at -78 °C, and the reaction solution warmed to room temperature and stirred for a total of 1h. The palladium catalyst was prepared *in situ* by treating a suspension of 0.1 equiv of  $(PPh_3)_2PdCl_2$  in 5 mL of degassed THF with 0.2 equiv of 2.5 M *n*-BuLi in hexanes.<sup>19</sup> The resultant dark solution was stirred 10 min at room temperature and then 2 equiv of distilled acetyl chloride was added. The catalyst-acid chloride reaction solution was cooled to -35 °C and then the solution of **5c** was added to the reaction mixture keeping the temperature below -30 °C. The reaction was warmed to 0 °C for 2 h, diluted with ethyl acetate and washed with saturated aqueous NaHCO<sub>3</sub> and brine. The product was purified by silica gel chromatography (3/1 hexanes/ethyl acetate) to give 74% of analytically pure **7a**.<sup>20</sup>

Acknowledgments: We would like to thank Dr. Philip Hipskind, Dr. David Mitchell, Thomas Koenig, Nancy Harn, James Nixon and Karen Lobb for helpful discussions during the course of this work.

## **References and Footnotes**

- (a) Pindur, U.; Pfeuffer, L.; Flo, C. Chemiker-Zeitung 1986, 110, 307; (b) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York and London, 1970; p. 33; (c) Remers, W. A., Heterocyclic Compounds, Indole Part 1, ed. by Houlihan, W. J., John Wiley & Sons, Inc.: New York, 1972; p. 111; (d) Idem, ibid., Part 3, 1979; p. 357; (e) Kozikowski, A. P.; Ames, A. J. Am. Chem. Soc. 1980, 102, 860.
- 2. Anthony, W. C. J. Org. Chem. 1960, 25, 2049.
- 3. Ketcha, D. M.; Gribble, G. W. J. Org. Chem. 1985, 50, 5451.
- 4. Heacock, R. A.; Kasparek, S. Adv. Heterocycl. Chem. 1969, 10, 61.
- 5. Bergman, J.; Venemalm, L. Tetrahedron 1990, 46, 6061.
- Murakami Y.; Tani, M.; Suzuki, M.; Sudoh, K.; Uesato, M.; Tanaka, K.; Yokoyama Y. Chem. Pharm. Bull. 1985, 33, 4707.
- 7. The 3-bromoindole **4a** was prepared as follows: 0.95 equiv of *N*-bromosuccinimide in 100 mL THF was added to a suspension of 37 mmol of **3** in 100 mL of THF over 30 min at -10 °C. The reaction was worked up extractively after 15 min and the product crystallized from 4/1 hexanes/acetone to afford 77% of **4a**.
- 8. Halogen metal exchange was confirmed by both deuterium quench experiments and reaction of 5a with methyl iodide.

- The 3-iodoindole 4b was prepared as follows: 1.0 equiv of N-iodosuccinimide in 25 mL THF was added to a suspension of 11 mmol 3 in 25 mL of THF over 20 min at rt. The reaction was worked up extractively after 30 min and the product purified by flash chromatography using 4/1 hexanes/EtOAc to afford 78% of 4b.
- 10. Oster, T. A.; Harris, T. M. Tetrahedron Lett. 1983, 24, 1851.
- 11. (a) Amat M.; Hadida, S.; Bosch, J. Tetrahedron Lett. 1994, 35, 793; (b) Erdik, E. Tetrahedron 1992, 48, 9577; (c) Knochel, P.; Singer R. D. Chem Rev. 1993, 93, 2117.
- 12. Negishi, E.; Bagheri, V.; Chatterjee, S.; Luo, F. T. Tetrahedron Lett. 1983, 24, 5181.
- (a) Sakamoto, T.; Kondo, Y.; Takazawa, N.; Yamanaka, H. *Tetrahedron Lett.* 1993, 34, 5955; (b) Amat, M.; Hadida, S.; Bosch, J. *Tetrahedron Lett.* 1994, 35, 793.
- 14. Bhar, S.; Ranu, B. C. J. Org. Chem. 1995, 60, 745.
- 15. The reactions were very selective and compound 3 was the major reaction by-product formed during preparation of 7a-e under the optimal conditions.
- (a) Murakami, Y.; Tani, M.; Tanaka, K.; Yokoyama, Y. Chem. Pharm. Bull. 1988, 36, 2023; (b) Murakami,
  Y.; Tani, M.; Suzuki, M.; Sudoh, K.; Uesato, M.; Tanaka, K.; Yokoyama, Y. Chem. Pharm. Bull. 1985, 33, 4707.
- 17. Higher yields of 3-(2-haloacyl)indoles (49%) have been obtained by reaction of indole with N-acylpyridinium salts although preparation of 7e using these conditions was unsuccessful: Bergman, J.; Backvall, J. E.; Lindstrom, J. O. Tetrahedron 1973, 29, 971.
- 18. Reaction of 5a with 2-chloro-N-methoxy-N-methylacetamide afforded 7e in only a 14% yield.
- 19. Negishi, E.; Takahashi, T.; Akiyoshi, K. J. Chem. Soc., Chem. Commun. 1986, 1338.
- 20. Compound 7a. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 7.96-7.93 (m, 1H), 7.41-7.29 (m, 3H), 7.22-7.19 (m, 2H), 6.98-6.95 (m, 2H), 5.75 (s, 2H), 3.86 (s, 3H), 2.74 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): δ 195.14, 156.43, 140.26, 137.21, 129.35, 126.28, 125.49, 123.17, 122.25, 121.15, 116.17, 115.70, 110.04, 60.33, 31.74, 30.58. MS (FD): *m/z* = 313 (M<sup>+</sup>, 100%). Anal. calcd for C<sub>18</sub>H<sub>16</sub>NO<sub>2</sub> Cl: C, 68.90; H, 5.14; N, 4.46; Found: C, 68.77; H, 5.04; N, 4.47.

(Received in USA 17 April 1997; accepted 22 May 1997)